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ABSTRACT

This paper describes Harris AI research performed
on the Adaptive Link Reconfiguration (ALR)
study for Rome Lab, and focuses on the applica-
tion of constraint propagation to the problem of
link reconfiguration for the proposed space based
Strategic Defense System (SDS) Brilliant Pebbles
(BP) communications system. According to the
concept of operations at the time of the study,
Laser communications will exist between BP's and

to ground entry points. Long-term links typical of
RF transmission will not exist. This study
addressed an initial implementation of BP's based
on the Global Protection Against Limited Strikes
(GPALS) SDI mission. The number of satellites

and rings studied was representative of this prob-
lem.

An orbital dynamics program was used to generate
line-of-site data for the modeled architecture. This

was input into a discrete event simulation imple-
mented in the Harris developed COnstraint Propa-
gation Expert System (COPES) Shell, developed
initially on the Rome Lab BM/C _ study. Using a
model of the network and several heuristics, the

COPES shell was used to develop the Heuristic

Adaptive Link Ordering(HALO) Algorithm to
rank and order potential laser links according to

probability of communication. A reduced set of
links based on this ranking would then be used by

a routing algorithm to select the next hop.

This paper includes an overview of Constraint Pro-

pagation as an Artificial Intelligence technique and
its embodiment in the COPES shell. It describes

the design and implementation of both the simula-
tion of the GPALS BP network and the HALO

algorithm in COPES. This is described using a

Data Flow Diagram, State Transition Diagrams,
and Structured English PDL. It describes a laser
communications model and the heuristics involved

in rank-ordering the potential communication
links. The generation of simulation data is
described along with its interface via COPES to
the Harris developed ViewNet graphical tool for
visual analysis of communications networks. Con-
clusions are presented, including a graphical

analysis of results depicting the ordered set of links
versus the set of all possible links based on the

computed Bit Error Rate(BER).

Finally, future research is discussed which includes
enhancements to the HALO algorithm, network
simulation, and the addition of an intelligent rout-

ing algorithm for BP.

1. SDI BRILLIANT PEBBLES COMMUNI-
CATIONS

During the course of the ALR program the
space-based architecture was changed to be based
on the concept of "Brilliant Pebbles (BP)". Each
BP consists of a weapon system, sensor system,
and a communications system. The focus of the
ALR was on the communications system, as is that

of this paper.

1.1. LINK RECONFIGURATION FOR BRIL-
LIANT PEBBLES

The BP network consists of many platforms,
each of which can receive simultaneously from a

large number of neighbors, but which can only
transmit via a laser to one other platform at a time.

This work was funded by the U.S. Air Force Rome
Laboratory under contract number F30602-89-D-0096
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It alsorunsin anopen-loopfashionusingsimplex
links,wherea platformcalculatesthepositionof
otherplatformsbasedon orbital predictionsand
periodicpositionupdates.It thenpointsat the
selectedplatformonly for thedurationof a mes-
sage.A link isneverestablishedin themannerof
a typicalRF architecture.Thereis, however,the
possibilitythatpebbleswill not recalculatelinks
on apermessagebasis.Althoughthestudydoes
notaddressthispossibility,theCOPESimplemen-
tationof theHALO Algorithmcouldbemodified
in a straightforwardmannerto accommodatesuch
achange.

Given the large numberof potentiallinks
from any node,a routingalgorithmshouldnot
haveto considerall potentialnodeseverytimea
messageis sent. To work effectivelyit should
only haveto considera subsetof the links. This
approachrequiresa databaseto be maintained
whichcaneffectivelyratelinks accordingto con-
straintssuchas,longevityof LOS,range,probabil-
ity of accuratepositiondata for other nodes,
beam-widthlimitations,probabilityof jamming,
etc. Maintainingsuchanintelligentdatabasecan
significantlyspeedup theroutingalgorithm,and
makeit morerobustin thefaceof enemyactions.
Theconceptof link reconfigurationwasredefined
underthe ALR programto meantheprocessof
creatingandmaintainingsuchadatabaseof rated
links.

1.2. GLOBAL PROTECTION AGAINST

LIMITED STRIKES (GPALS)

During the ALR study we simulated an ini-
tial implementation of the Brilliant Pebbles SDI
architecture based on the Midcourse and Terminal

Tier (MATTR) and Global Protection Against
Limited Strikes (GPALS) studies. The SDI archi-
tecture has been radically altered since the BM/C 3

study, (Crone, Julich, 1990) with the incorporation

of Brilliant Eyes(BE), Brilliant Pebbles(BP), and
the Endo / Exoatmospheric Interceptors (Eq). In
addition, the concept of Battle Management has
evolved, including both the location of Battle

Managers and modes of operation. The MA'Iq'R
study defined a BP-based SDI architecture which
includes the midcourse and terminal phases. The
GPALS study defined requirements for an SDI sys-
tem which addresses a more limited size strike

which may originate from any location. The
GPALS architecture represents an initial but
scaled-down version of an eventual phase 1 archi-
tecture, with less BPs and BEs, and without the

GSTS system.

A significant difference in the mission of
GPALS (as contrasted with the full scale SDS) is
indicated by the name. First, the system provides
Global Protection. The space elements of the sys-
tem are intended to support defense both within
CONUS and in overseas theaters. Advantages can
be obtained by using a common communications
architecture for the overseas theater and the

CONUS implementation. Second, the term Pro-
tection suggests a different mission from the earlier
SDIO Phase 1 architecture. The Phase 1 architec-
ture had a primary mission of attack deterrence.
Providing protection (zero leakage of attacking
missiles) indicates a requirement for increased reli-
ability and less probabilistic focus. This affects
the communication requirements by placing a

higher emphasis upon guaranteed delivery of mes-
sages. Third, the term Limited Strike indicates a
smaller threat than the massive strikes considered

in the Phase 1 (full scale) architecture.

The GPALS architecture is more distributed

than previous architectures, with Battle Manage-
ment being distributed along both regional and ele-
ment lines. Weapon Target Assignments (WTA's)
are generated much closer to the weapons. Control
of the battle is hierarchical, however, through the
use of Preplanned Response Options (PROs),
Defense Employment Opportunities (DEOs), and
Weapons Release Authority (WRA).

Figure 1 provides a view of the
MATrR/GPALS architecture and connectivity.
The legend describes the various elements
involved in the battle. Control of the system is

hierarchical beginning at the Command Center
(CC) and proceeding through Regional Operations
Centers (ROCs) and Element Operations Centers
(EOCs).

In GPALS, battle management is distributed
and co-located with sensor systems such as Brilli-

ant Eyes(BE), Brilliant Pebbles(BP) and Ground
Based Radars(GBRs). The ALR study was pri-

marily concerned with track reports originating
with BPs that are filtered by merge nodes as they

are passed toward a GEP.

2. CONSTRAINT-BASED ALGORITHM
DEVELOPMENT

Given the requirements of the GPALS simu-
lation and the need to develop a heuristic algorithm
to maintain a reduced set of potential links, con-

straint propagation as embodied in the COPES
shell was chosen to accomplish both tasks. The

application of constraint propagation to intelligent
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Figure 1 - Space-based GPALS Communications Architecture

problem solving was begun during the BM/C 3 pro-

gram with Rome Lab.That effort resulted in the
initial development of the COPES shell.(Crone,
Julich, 1990) COPES was subsequently used in
developing a distributed intelligent network
manager in cooperation with the C Language
Integrated Production System (CLIPS) rule-based
language under the Distributed Intelligent Network
Control (DINC) program for the U.S Army Stra-
tegic Defense Command. (Crone, Julich, 1991)
This research was performed in cooperation with
the Professor Ramamoorthy and students at the
University of California Berkeley. The subject of

this paper is the work done in intelligent link
assignment for the SDI laser communications
space network.

Since this work, we have used COPES to

implement a version of the new Arpanet Shortest
Path First(SPF) algorithm (McQuillan, 1980), a
version of simulated annealing using COPES for
the traveling salesman problem as a precursor to
the problem of Weapon Target Assignment under
Harris research, and have developed a neural net-

work development tool. The simulated annealing

technique utilized the discrete event scheduling
capability of COPES to produce solutions to a 95
city problem which were consistently within 94%
of the optimum solution. The COPES developed
neural network tool is based on the Parallel Distri-

buted Processing Project. (McClelland, 1988). In
each case, as in all COPES development, the prob-

lem is represented in a distributed manner without
a central executive process. In addition, the solu-
tion is distributed throughout the object database.
For instance, in the case of the SPF algorithm, the
shortest "next hop" to a particular node is main-
tained in the object representing the that node, as

opposed to being maintained in a centralized rout-
ing table.

The remainder of this section gives the prin-
ciples of constraint propagation in the context of
Artificial Intelligence; its implementation in the
COPES shell; and the current status of the shell as

a basis of implementation for the HALO algo-
rithrn.
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2.1. BACKGROUND

2.1.1. Traditional Search Techniques

A variety of search techniques exist, in the
area of combinatorial minimization with an objec-
tive function to be minimized. (Press 1986) We

have investigated some of these in the similarly
complex domain of planning and have found them
to be inadequate for knowledge-based problems.

In particular the Simplex Method is a linear pro-
gramming technique which can maximize a func-
tion subject to a set of constraints. This was found
to be too slow and unable to provide partial
schedules if all constraints could not be met. The

Constrained Minimization technique in which a
cost function is to be minimized subject to a set of
constraints depends on the function being continu-

ously differentiable. In this case standard tech-
niques such as Penalty Function methods, and
Conjugate Gradient methods could be used.
Because of the discrete nature of planning and link
assignment, such a function cannot be found. The
concept of a heuristic cost function can be useful
using a AI approach, however. Used in this way
the function is used to evaluate potential link
assignments and guide further refinement.

The method of simulated annealing is a tech-
nique which for practical purposes has solved the
"traveling salesman" problem. It has been used
successfully for designing complex integrated cir-
cuits to minimize interference among connecting
wires in the arrangement of several hundred
thousand circuit elements on a silicon substrate.

These are both applications of combinatorial
minimization. There is an objective function to be
minimized over a discrete but very large
configuration space. The method of simulated
annealing based on the Metropolis algorithm
always takes a downhill step while sometimes tak-
ing an uphill step thus avoiding being trapped in a
local minima. (Press, 1986) It is applicable in
cases where a simple measure of an objective func-
tion (analog of energy) can be defined. For most
complex problems this cannot be defined by one
function.

2.1.2. Artificial Intelligence

State space search is used in AI to move
from an initial state representation of the

problem(such as all potential links for each CV
platform) to a goal state by the application of
knowledge-based operators. (Rich, 1983) Given
the nature of the initial and goal states, this search
can be combinatorial. Algorithmic techniques

exist such as branch-and-bound, and A* to reduce

the search for some problems, but are inadequate
for knowledge-rich problems. In this class of
problem the cognitive activity of an intelligent
agent involves two types of search: (1) knowledge
search, that is, which operator to apply next, and
(2) problem-space search, that is, search within the
problem space for a goal state. (Gupta, 1983)
Pruning of both spaces is crucial to reducing the
search. In order to solve many hard problems

efficiently, it is often necessary to to construct a
control structure that is no longer guaranteed to
find the best answer, but that will almost always
find a very good answer. This is called heuristic
search because knowledge is used to guide the
search process. Heuristic search can be applied

implicitly via the pattern matching of the rules
against the problem-space data which takes place
on each cycle in a production system, or explicitly
via the weighting of constraints as in constraint-
directed search in the ISIS scheduling system.
(Fox, 1983) Blackboard Architectures address
many of the issues of state space search and have
been suggested as a control mechanism for prob-
lem solving. (Hayes-Roth, 1983)

Systems which take advantage of a great deal
of knowledge are referred to as "Expert Systems",
and have been shown to provide problem-solving

computer programs that can reach a level of perfor-
mance comparable to that of a human expert in
specialized problem domains. (Barr, 1982)
(Gevarter, 1983)They are in fact a form of qualita-
tive model of both the problem space and the
human problem solver. (Clancey, 1986) Expert
Systems are characterized by the separation of
data, rules(knowledge), and control. (Crone, 1985)
They are usually rule-based, and due to the often
enormous amount of pattern matching in rule-

based systems, have not fared well in real-time
applications. Some speed-up is predicted via
parallel processing. (Gupta, 1983) Given the often
autonomous intelligent activity which would be
required in the link assignment problem, Expert
Systems will be required, so research must uncover
faster inferencing mechanisms. Rather than con-
sidering all data and knowledge in every inferenc-
ing cycle a more "object-oriented" (Stefik, 1986)
knowledge representation is suggested. This is
especially appropriate in cases where the problem

space is in the form of a network with each node
being connected to surrounding neighbors. The
approach taken by this research is to use constraint
propagation as the method of inference.
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2.1.3. Constraint Propagation

An architecture which has been used with

varying degrees of success, in physical reasoning,
temporal reasoning, and spatial reasoning is to
represent the knowledge base as a constraint net-
work which performs inference by propagating
labels. (Davis, 1987) These labels represent poten-
tial candidate values for nodes in the network.

2.1.3.1. Constraint Networks

A constraint network is a declarative struc-

ture which expresses relations among parameters.
It consists of a number of nodes connected by

"constraints". (Davis, 1987) A node represents an
object which contains state and which is
represented by the value of the instance variables
of the object. A constraint represents a relation
among the instance variables of the node and those
of other objects it connects. As such, it is usually
local in scope, but can connect all nodes in the case
of a global constraint such as a heuristic weighting
function. Examples of different applications of
constraint propagation are numerous. (Crone, Jul-
ich, 1987,1990,1991) (Davis, 1983) (Fox, 1983)
Forward inference on constraint networks, called

assimilation, is usually done using constraint pro-
pagation, shown in algorithm 1. In constraint pro-
pagation, information is deduced from a local
group of constraints and nodes, and is recorded as
a change in the network. Further deductions will
make use of these changes to make further

changes. Thus, the consequences of each datum
gradually spread throughout the network.

Algorithm 1. - Constraint propagation

repeat
-take some small group of constraints and nodes in
some connected section of the network,

-update the information in this section of the network,
given the information in the constraints and the nodes;

until no more updating occurs (the network is quiescent)
or some other termination condition is reached.

In its most basic form, a set of potential labels for
each node's instance variables are given, and then

corrective action or alter resource planning. This

type of diagnostics is known as specification based
as opposed to the symptom based approach used in
rule-based diagnostic expert systems.

Unlike commercial AI shells such as ART,

constraint propagation takes advantage of locality
of information. Some of its valuable properties
are:

• Forms a close analogy for systems in which phy-
sical effects propagate across connections
between components.

• Constraint propagation consists of a simple con-
trol structure similar to a rule-based inference

engine.

• Degrades well under time limitations; interrupt-
ing the process in the middle gives useful infor-
mation already deduced.

• With assimilation, it is easily implemented in
parallel, since updating can be performed all
over the network simultaneously.

• Is easily expanded by adding constraints incre-
mentally to the network.

2.1.3.2. Inferencing in COPES

In assimilation, the instance variable values

for each node are represented by a set of labels
which must be consistent with constraints relating
the instance variable to those of other nodes. The

general form of refinement is given by the follow-
ing definition: Definition 1. Let C be a constraint

on nodes X_.... X k. Let Si be the label set for X r
Then

REFINE(C,X) = {ae Sj I _ (_e S t, i:l .... k, i_j)

C(a_..... a .... a_)l.

That is, REFINE(C, X_) is the set of values for X
which is consistent wi{h the constraint C and wi_

all.the labels Si. .A value aj is in REFINE(C, X!),_a. _s m S and It _s part of some k-tuple a.,j j l "
which satisfies C and all the S i-

Applying the updating function REFINE

reduced based on constraint propagation to a within the constraint propagation control structure
unique solution or an inconsistent state, -: given in Algorithm 1, gives the Waltz algorithm.

(Waltz, 1975) The Waltz algorithm applies con-
A greater depth of knowledge concerning a

particular system can be expressed in terms of con-
straints than is possible in a rule-based system
alone. Model-based reasoning is a common appli-
cation of constraint propagation where expected
performance of a system is described through a set
of constraints, which may contain mathematical
models. Deviation from this behavior or observed

similarities to expected failure modes can trigger

straints to nodes until no more changes occur (the

network has reached quiescence). Algorithm 2 is
an efficient implementation of the Waltz algorithm
which served as the original basis for this research
with many additions being added over time.
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Algorithm 2. - Waltz Algorithm

/* The set

S_ is the current label set of quantity X l */

REVISE refines all the parameters X t ...
,X_ of a given

constraint C, and returns the set of all parameters

whose set was changed.

procedure REVISE(C(X l .... X k ))
begin CHANGED _ o

for each argument X l do

begin S _ REFINE(C, Xi)
if S = o then halt

else if S _ St then

begin Sl _ S
add Xi to CHANGED

end
end

return CHANGED

end

procedure WALTZ

begin Q <- a queue of all constraints

while Q _ _ do

begin remove constraint C from Q

CHANGED t-- REVISE(C)

for each X t in CHANGED do

for each constraint C' ¢ C which has X_ in its
domain do

addC' toQ
end

end

2.2. APPROACH

2.2.1. Development of COPES Shell

In order to effectively apply Waltz's algo-
rithm to a network type of problem we designed
and implemented the COPES Shell at Harris to

merge the concepts of constraint propagation as a
method of inference, with object-oriented pro-
gramming as a method of representation. Unlike

most applications of constraint-based reasoning,
the use of COPES provides a solution which is
easily created and updated. The representation
scheme allows the hierarchical definition of com-
plex objects called classes which contain state
information in the form of instance variables, and

links to constraints which are applied to them. For
some problems, constraints are inadequate to pro-
duce a unique state. We added a searching
mechanism to the shell which allows back-tracking
with or without selective pruning. An instance
variable defined for a class is really represented by

a complex data structure which includes its type,
name, parent, etc. This allows generic functions to

be developed where variable type is dynamically
bound. This is similar to a Lisp/Flavors approach.
Among the objectives of this work was to build the
shell using the language "C" on a Unix environ-

ment such as the Harris HCX-9, and to emphasize
run-time speed. Since a large part of the
knowledge base is programmed directly in "C",
and locality of information is considered; COPES

offers an execution time advantage over rule-based
systems.

The building of a tool to support Expert Sys-
tem development is compounded by the need to
experiment with the tool during development to
expose limitations and problems. The flexibility
required for AI tool development leads one to fol-
low the principles of object-oriented design, where
possible. At Harris we have built object-oriented
versions of both C and Ada to make implementa-
tion possible in a conventional environment.

(Crone, Julich, 1987) (Simonian, Crone, 1989) For
the sake of run-time speed, we did not use either
for the development of COPES, but did follow

many of the principles of object-oriented program-
ming.

Object-oriented design methodologies typi-
cally start with an emphasis on the data represen-
tation. In order to support AI design, we added
extensions to Entity-Relationship (E-R) diagrams
which are typically used for database design.
(Chen, 1976) To describe the software design, we

modified the Jackson Structured Design(JSD) pro-
cess model. (Cameron, 1986) The AI and
software designs of COPES are described in detail
elsewhere. (Crone, Julich, 1990)

2.2.2. Knowledge Representation in COPES

Knowledge takes two forms in COPES: (1)
the constraint network, and (2) the constraint func-
tions. The application of the constraints to the net-
work is the function of the shell.

The creation of such a constraint network

database is done either interactively for small prob-
lems or is read from a Unix file created by a C pro-
gram. In most problems amenable to solution via
constraint propagation, a network is often homo-

geneous with identical constraint relationships
between neighboring nodes. We are currently
developing a "class" language and "instantiation"
commands to make the creation of such a network

easier and more dynamic.
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2.2.3. State of the COPES Shell

The following is a description of the current state
of development of the COPES shell and some of
the problems to which it has been applied.

• Hierarchical knowledge representation scheme
using object oriented approach

-- Metaclass, classes, subclasses

-- Instance variables to define object state

-- Class constraints (definition and instances)

• Waltz constraint propagation based on represen-
tation scheme.

• State saving and Restoring callable by constraint
routines

• Abstract variable types with generic access
methods

• Container variable types which support queues,
stacks, sets, etc.

• Container variables also support distributed
problem solving via TCP/IP sockets.

• Scheduled variable modification for discrete

event simulation including cancellation of
events.

• Variable access methods such as PUT, GET,
WRITE, etc. either direct or "BY_NAME",

where the class object and variable name is
given.

• Database features to list class structure, con-

straint bindings, and error messages during crea-
tion

• A variety of tracing features for debugging

• Problems to which COPES has been Applied

--Distributed Intelligent Network Manage-
ment

-- Distributed Network Emulation

-- Distributed Heuristic Algorithms

Simulated Annealing WTA Research

-- model-based diagnostics

-- Modeling Neural Networks

-- Distributed algorithms: A*, N-queens, SPF,
TSP

--Dataflow-based discrete event simulation
for SDI

3. HALO ALGORITHM USING COPES

This section describes the HALO Algorithm

and its implementation using the COPES shell.
We first introduce the Adaptive Link problem and
develop a model to analyze it. Then we discuss the
heuristics of the algorithm and consider their
relevance to the actual Brilliant Pebbles scenario.

Next, we discuss how the model is implemented
using the COPES shell as a simulator. Finally, we
discuss some results obtained from running the
simulator on a typical scenario for the Brilliant
Pebbles architecture.

3.1. HALO ALGORITHM DEFINITION

This section develops a model describing the
HALO Algorithm in terms of objects and defines
how these objects interact with one another. This
model is defined with an Object Oriented structure
which lends itself well to implementation in
COPES. The section concludes with a definition

of the heuristics of the algorithm.

3.1.1. Adaptive Link Problem

The HALO Algorithm considers a Brilliant
Pebbles architecture consisting of a constellation
(or constellations) of satellites in low earth orbit
communicating with each other using laser links.
The algorithm attempts to reduce the work of a
routing algorithm by generating a ranked list of
links ordered by the best to worst probability of
successful transmission. The algorithm generates
this optimally ordered list by applying a set of
heuristics to the list of links such that in most cases

the router would only have to consider a small set
of these optimal links to make its routing decision.
This is important in a laser based communication
network where a large number of highly dynamic
potential links exist.

Figure 2 shows a model of the data flow and
objects used to implement both the HALO Algo-
rithm and a simulation of a BP scenario. This

model represents a single instance of the HALO

algorithm running on one BP(referred to in this
discussion as the reference node). In this phase we

do not consider the router, consequently we are
only concemed with the point of view of one peb-
ble and how it orders its optimal set of links.

Thus, Figure 2 does not consider any routing
issues. In the rest of this section we develop the

model shown in Figure 2 and describe the algo-
rithm as a set of heuristics (or constraints), a set of

objects, and the relation between them.
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Figure 2 - HALO Data Flow

The data flow diagram in Figure 2 shows the cate an object viewing the data in other objects,
main objects in the HALO Algori_ and the ....-e.g_ Ref Node BP accesses link status from BP
communications between these objects. The object
BP Node describes parameters common to each
BP in the constellation. It contains information

such as the position of each satellite, its error term,
and other instance information. This object is
replicated many times within each BP which runs

this algorithm (it is the reference node's view of
other BPs in the network). The object Ref Node
BP describes information unique to the reference
node. It contains the ranked list of "links", some
state information, and some information about the

constellation. The object Central Simulator is
not a physical object in the BP scenario, but con-

tains data associated with the overall HALO algo-
rithm and helps control the interactions between
objects. It governs the operations of the simulation
such as reading the orbital dynamics file, and start-
ing and stopping the simulator. The object
Display Process also is not a physical object in the
BP scenario but is an entity which monitors the
algorithm and simulator, and reports its progress
for display and analysis. The lines with arrows
show the communication between objects, the
solid lines indicate actual messages being sent to

the appropriate object(algorithmic communication,
not to be confused with actual communication

between physical BPs), and the dashed lines indi-

node 1.

The HALO Algorithm uses a set of heuris-
tics which govern how the algorithm sorts the list
of possible links. These heuristics are described
below.

• LOS - This heuristic checks whether a BP is in

LOS of the reference BP. For the purposes of
the COPES implementation, this data is

precomputed using an orbital dynamics package
to model the satellite motion and visibility.

• Velocity - This heuristic checks whether the
relative velocity between two BPs communicat-

ing with one another would cause a Doppler
shift impairing the laser communications. An
analysis of the need for this heuristic is
described later in this section.

Lasercomm Probability - This heuristic deter-
mines the probability of a successful communi-
cation between two BPs. It models the effects

of pointing error, position uncertainty between
pebbles, and other laser parameters.

Position Error - This heuristic allows the posi-
tion error to be corrected at a predetermined
rate. Currently, the position error updates
(which would normally be received from other

BPs) are randomly scheduled with a period of
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one satellite orbit.

These heuristics are imposed by the HALO
algorithm and do not necessarily map into unique
COPES constraints. Each heuristic defined above

is developed further in the remainder of this sec-
tion. In the next section we develop the COPES
constraints which implement these heuristics.

3.1.2. Line Of Sight Heuristic

The Line Of Sight (LOS) heuristic deter-
mines whether a reference node can communicate

with a given BP. This simply tests whether the
specified BP is physically in LOS with the refer-
ence node. If it is not, then no further considera-

tion is given to the BP as a potential link.

3.1.3. Velocity Heuristic

We now consider the requirements for a
velocity constraint. The relative motion of two
BPs may affect the communications between
themselves due to the Doppler shift of the laser-
beam. The maximum tolerable frequency shift of
the laserbeam is on the order of 1 nm for the laser

comm systems considered in the brilliant pebbles
architecture. The Doppler shift of light between
two bodies is defined by the following equation:

v'= (1-u)
C

u = relative velocity of BPs.

v = frequency of light source at rest.

v' = frequency of light due to u.

This equation is valid if U,_l.
c

In the brilliant pebbles simulations at typical
satellite constellation altitudes the maximum rela-

tive velocity of BPs is about 7.5 km Is. Substituting
the appropriate values into the above equation, the
Doppler shift that the BPs see is approximately
20pro. This is two orders of magnitude less ihan
the laser design constraint of 1 nm. Thus, this con-
straint appears to be of limited concern in the ini-
tial analysis. There has been some discussion in
the SDI community concerning a potential prob-
lem with link acquisition based on relative velo-
city. This remains an area of research.

3.1.4. Laser Probability Heuristic

The laser probability heuristic is a computa-
tion of the probability of successful reception of a
laser transmission from the reference BP to a

designated source BP. The probability is com-
puted from a model of the laser communication
link. This model is for a direct-detection receiver

using multimode pulse position modulation (PPM)
signaling and is currently being studied for the
Brilliant Pebbles architecture.

The laser model defined for the HALO Algo-

rithm has only one degree of freedom, the position
error (described below). The model assumes fixed
values for other parameters of the laser model. In
addition controlling the transmitter beamwidth

yields a better probability of successful communi-
cation over a wider range of distance between
source and destination. The model assumes the

beamwidth can vary from 2.5 mRAD to 25 mRAD.
The model simulates this variance by keeping the
following relationship:

OvR = K

where

0b = receiver beamwidth.

R = receiver range.

K = constant.

The range of distances between the reference node
and a designated node varies over the interval
(200,4500)km. Thus, the laser model optimally
sets its 0b over this interval and then computes the
probability of successful communication using the
position uncertainty.

3.1.5. Position Error Heuristic

Each BP maintains a database of the current

positions of other BPs in the network used for
routing and link selection. As time passes, each BP
calculates predicted position of the other BP's.
Due to the relative infrequency of position updates,
there is error associated with these predictions.

This position update message has an inherent error
associated with it as well.

In the adaptive link reconfiguration simula-
tions, we model a position error as a growing
sphere around the BP over time. Thus, we need a
rate term to grow this sphere as the simulation
progresses. The worst rate would result from the
BP being at a less or greater orbit altitude than it is
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supposedto be.Thiswouldcausetheorbit period
to be fasteror slower,respectively,thana BP
wouldpredictit to be. Thus we will assume that
the position update message has an error of a cer-
tain amount d which is in a direction greater or less
than the actual orbit radius.

Assuming a spherical earth, the error will
grow at a linear rate as computed below:

R'=R -d

v,(t) = v (R-d) - v(R)

v (r) =

where:

1 1
Eorb,,=t gZ-g )

d is the error of the global positioning system.
R is the perceived radius of the BP orbit.

R" is the actual radius of the BP orbit.

v,(t) is the error velocity.
Eo,_i, is the error rate in m/s.

tl is the gravitation parameter in m3/s 2

The adaptive link simulations assume the

positioning system used in the BP architecture is
accurate to 100 m. This causes the worst possible
position error rate of 0.055 m ls at an altitude of
550 km. This value is used in the simulations run.

The simulator also assumes that the position
updates occur at a rate of once per orbit.

3.2. COPES IMPLEMENTATION

The model of Figure 2 presents a set of
objects which describe the HALO Algorithm.
These objects are described as classes in COPES.
Each class defines the state information of a partic-
ular object in a model. There may be multiple
instances of a class such as the node object in the
model which is duplicated for each physical node
in the system. A constraint function describes the
interactions between the defined objects. A con-
straint is bound to variables in a given class
instance. A constraint "propagates" or "fires"
when a variable in a class instance that the con-

straint is bound to changes. When the constraint
"fires" it observes the state of the objects it is
bound to and changes the states of these objects
appropriately. A constraint may be bound to a
variable in two ways. The first way is for the con-
straint to "fire" when the variable changes. The
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second way is for the constraint to ignore changes
to a variable but access this variable when the con-

straint does "fire" from some other binding.

The HALO Algorithm is defined as a set of
classes and constraints. The classes defined below

represent the objects of Figure 2 and some addi-
tional classes required for the COPES shell and to
support the simulator for the HALO algorithm.
The classes are:

Ref Node : This class contains information unique
to the reference node above what is

necessary to describe a general node.

Node : This class contains information unique
to each node.

Link : This class contains information about

the laser link between the reference
node and the node with which this link
is associated.

File In : This class contains file status and

descriptor information used by the
central simulator.

Display : This class contains file descriptors and
flags used by the display object.

GLOBAL : This class contains simulation parame-
ters and flags to which every con-
straint has access.

In developing the algorithm, we define state
transition diagrams which describe the threads of
the overall algorithm flow. A sample of one of the
state transition diagrams is shown for the central
simulator (Figure 3). The Central Simulator is

responsible for managing the simulation and read-
ing the new position and velocity (p&v) parame-
ters from the orbital dynamic file. It loads the p&v
information into each node, waits for the current

cycle to complete and then starts the next cycle.
When the simulation is complete, the central simu-
lator causes the COPES shell to terminate. Refer-

ring back to Figure 2, a Node performs three tasks.
During the initialization cycle, it schedules a posi-
tion update message to correct the position error
tenn. During a normal cycle it receives and inter-
prets position update messages and it responds to
new position and velocity parameters. The refer-
ence node shown in Figure 2 is the node on which
the software is considered to be running in the
simulation. In a real system each node would be a
reference node. The reference node manages the
list of ranked links. As each node updates its link
status parameters, the reference node updates the
list of ranked links. When all links have been

updated in the current cycle, the reference node



indicatesit hasanupdatedlinks list whichstarts
thedisplayprocess.TheDisplayProcessmonitors
thesimulationthenprintsout simulationstatistics
andformatsthe rankedlist for viewing with the
ViewNetprogramattheendof eachcycle.
A sampleof thisoutputisgivenlater.

INIT

SIM STEP OR INIT

MEXTS,_ s'r£P I I TNn"

J READINGP&V J
FILE FOR NEXT
SIM TIME OATA

(X_MERE_ek_G I
WRITE p &V TO E,ACH NOOE_NST/_qCE S_I,,ILA_ IX_IE

01SPLAY TO WRITE EXIT SIMULATION
RANKED UST

Figure 3 - Central Simulator STD

The constraints are derived from the heuris-

tics (described in the previous section) coupled
with the state transition diagrams. User defined
constraints are detailed in the remaining part of
this section. User constraints are defined using

structured english PDL.

The first constraint is the read_pos con-
straint. This constraint performs much of the func-
tion of the Central Simulator object. It is responsi-
ble for controlling the simulations aspects of the
COPES algorithm implementation, and reading
the orbital dynamics file for the current computed
satellite positions and LOS data.

This constraint has one instance and schedules

itself to fire once each cycle. This constraint is
bound to the instance of the class file in. This
class has a state variable, run_file_in, which the

read._pos constraint schedules to change in the
future. This allows the constraint to fire itself to

run at the beginning of each simulation time cycle
to read the current satellite position data. In addi-
tion to acting as the Central Simulator, the
read_pos constraint represents a BP reference node
computing the position, velocity, and LOS of each
node in the constellation. It takes advantage of the

discrete event scheduling capabilities of COPES
to move the simulation, link ranking, and display

through discrete phases. In this manner objects
like the Display do not have to signal the Central
Simulator when they are done. Their inactivity
(lack of constraint propagation changes in the net-
work) causes the removal of the next change from
the schedule queue and constraint propagation con-
tinues in the next phase.

The next constraint is the pos_update con-
straint. This constraint is concerned with schedul-

ing and receiving position update messages. It per-
forms two functions. It initially schedules the ran-
dom position update for each node. It then
responds to the position update messages which
cause the node to reset its position uncertainty.
This constraint represents a reference node receiv-

ing a position update message from another node
in the constellation. This message provides the
actual position of the satellite which the reference
node uses to reset its notion of that satellites posi-

tion. A separate pos_update constraint is bound to
each node instance in the BP scenario.

The next constraint is the Nodel constraint.
This constraint models the cumulative effect of the

position error. It gets fired when a p&v recompu-
tation event occurs (triggered by the Central Simu-
lator) which causes the node to increase its posi-
tion uncertainty. A separate instance of this con-
straint is bound to each class node instance.

The next constraint is the comm bet con-
straint. This constraint fires when the position

uncertainty parameter of a given node is modified.
It then (if in LOS, meets the Doppler heuristic, and

is within range) computes the bit error rate (BER)
of successful laser communication. A short Struc-

tured English PDL is shown for this constraint is
shown below as a design example.

comm her ()

(
when new position uncertainty parameters for this node

for each potential link
if node in LOS and (Doppler and range thresholds valid) then

compute new ber for successful tx (src to dest).
store new ber in link.

set link flag indicating to add/update link in ranked list.

else if link currently in ranked list then

set link flag indicating to remove link from ranked list.
endif

endfor

endwhen

}

It sets this BER in the link instance for this node.

A separate instance of this constraint is bound to
each class nodel instance.
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The nextconstraintis the rank links con-
straint. This constraintfires eachtime a node
modifiesitslink qualityparametersandthenranks
all thelinks accordingto theseparameters.When
all links have beendetermined,the constraint
sendstherankedlist out to thedisplayconstraint.
A separateinstanceof thisconstraintis boundto
theeachclassnode.

Thelastconstraintis thedisplayconstraint.
Thisconstraintimplementsthedisplayobject.Its
purposeis to taketherankedlist of links fromthe
referencenodeobjectandformatit for displayin
ViewNet.Additionally,it outputssomestatistics
of the simulationfor post analysis.A single
instanceof this constraintis boundto the class
DisplayProcess.

Finally,Harrisdevelopedconstraintbinding
diagramsareproducedfor eachconstraintto show
the dynamicbindingswhich link constraints to
class variables. Figure 4 shows an example of a
constraint binding diagram for the comm_ber con-
straint. This diagram is useful to understand how
the constraints interact with the object instances.
An instance of the comm_ber constraint is created
for each node and link object as it is viewed from
the reference node. An instance of the constraint

fires when the position error of the node instance to
which it is bound is modified. This causes the

given node object to reset the concept of bit error
rate for the link from the node to the reference

node. The remaining variables are bound as access
only and do not cause the comm_ber constraint to
fire. An access only variable is indicated in the
constraint binding diagram by placing an "A" on
the end of the line linking the constraint to the

variable, ca,.: node (instance for reference node)

nodeid
A position

/ position error

/ "_ition update r tin

_ stitm

/ Class: node (other instance*)

/ nodeid
Constraint: .L-,,.----- A position
co__bed x-_ position error

_k_ position update run

" , _ sUltus

\\' A ._Ia_ve yetocity

Figure 4 - Comm_ber Binding Diagram

The classes and constraints discussed in this
section define the COPES model for the HALO

Algorithm and simulator. In the next section we
discuss the actu,'d BP scenario used to test this

Algorithm and the results of those simulations.

3.3. SIMULATION DATA FOR THE ADAP-
TIVE LINK ALGORITHM

This section presents the simulations run for
the HALO Algorithm. The Adaptive Link simula-
tor provides two types of output for analysis. The
first is a visual display using the ViewNet tool
developed at Harris. The second is a plot of the
average ber rate of the top portion of the ranked
list versus the her of all possible links.

The Brilliant Pebble scenario used to test the

algorithm is an unclassified network which is
closer in size to a GPALS architecture. It consists

of a single constellation of satellites at an altitude
of 550 km and an inclination of 60 °. The constella-

tion contains 21 rings of 20 pebbles per ring. Only
one constellation is used since the problem is not
changed by multiple constellations and the imple-
mentation of the simulator is simplified. The
simulation described above runs for a period of one
earth day. This provides time for approximately
15 satellite orbits. The random position update
messages are issued once per orbit.

The ViewNet graphical tool provides the
capability to visualize the Adaptive Link algorithm
in operation to gain an intuitive understanding of
how it works. Figure 5 shows a snapshot in time
of the ViewNet display. This figure shows the
satellites in orbit around the earth, the reference

node with the eight "best" links connected to the
appropriate node. The actual ViewNet display is
in color. Each node has a special color indicating
its status as a potential link. In addition, the links
are color coded from red to grey indicating their
relative position in the list of ranked links. The
laser probability model tends to select the closer
links as opposed to the more distant links. How-
ever, it ranks extremely close links as less probable
due to the fact that the position error becomes
more significant at closer ranges. Observing the
ViewNet display, as the links are reordered and
displayed, this trend is apparent.

The second visualization of the simulation is

a graph depicting the enhanced set of links avail-

able to a router versus the set of all possible. The
set of all possible links is those links within LOS

and within range. The ber is computed for each of
these links and averaged. This plot is provided as
a function of time. The HALO algorithm
enhancement is shown by averaging the top 8 links
in the ranked list of links. This average is plotted
as a function of time also. The plot indicates that
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Figure 5 - Time Snapshot of Adaptive Link Viewnet Display
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the top eight ranked links are an order of magni-
tude better probability of successful transmission
over just any possible link. The plot is shown in
Figure 6.

4. CONCLUSIONS

The previous section presented a successful
simulation of a GPALS-based BP architecture

using the Discrete Event Simulation capabilities of
the COPES Shell. This simulation in COPES is

very flexible and easily modifiable to address the
BP network in its entirety, including any future
architectural or procedural changes. The simula-
tion of the network and results of the HALO algo-
rithm were also interfaced with the Harris

developed ViewNet graphics tool for network
analysis on the Silicon Graphics Workstation.
Also described was the COPES implementation
of the HALO algorithm. A graphical analysis

showed that the algorithm generates a reduced,
improved, and ordered set of links for further use
by a routing algorithm. The benefit of a lower bit
error rate on the seIected link is a reduction in the

power requirement for the communications.

Given the flexibility of a constraint approach
to the HALO algorithm written in COPES,

t .E -08

changes in constraints can easily be made to, for
instance, emphasize links which are more distant.
This is an area for future research.

5. FUTURE RESEARCH

For the ALR program, the size of BP con-
stellation which must be considered by a routing
algorithm has been reduced to one closer to the
GPALS architecture. We use an orbital dynamics
program to remove all nodes which are never seen
by the reference pebble we are studying. Finally,
using a set of constraints defined above, the set of
potential links is reduced and ordered by how well
each meets the constraints. The next step is to
develop an intelligent routing algorithm which
would use this ordered list of potential "next hops"
to choose a link or links for a particular message.
The major advantages to this approach are that the
set of potential links has been reduced significantly
prior to the running of the routing algorithm, and
the probability of successful transmission is higher.
An intelligent routing algorithm might also contain
heuristics to allow it to consider the first n poten-
tial links based on the situation, since the links are

already sorted by how well they satisfy a set of
link constraints.

tw
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Figure 6 - BER of All Links vs Top Eight Ranked Links
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